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ABSTRACT 

Extreme value distribution laws are obtained for 
the lifetimes  of multi-component  systems with 
replaceable  components,  under various  assumptions 
on the  asymptotic  relationship between number of 
components  in the  system and number of  spare 
components.     Results  are given  for  limiting 
distribution  laws  of order statistics  from  non- 
homogeneous  samples and samples of random size, 
and applied  to  the  superposition of  renewal 
processes.     An attempt  is made  to put  extreme 
value  theory  into  a  general  framework  using  the 
notion of  a  coherent  structure,  and  some  new 
results utilizing  this idea are  presented. 
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INTRODUCTION 

The limiting distribution of the maximum term In a sequence of Independ- 

ent,  Identically distributed random variables was completely analysed In a 

series of works by many writers, culminating  In the comprehensive work of 

Gnedenko  [6].    Results  for order statistics of fixed and Increasing rank were 

obtained by Smirnov  [14], who completely characterized the limiting types and 

their domains of attraction.    Generalizations of these results for the maximum 

term have been made by several writers;  Juncosa  [10] dropped the assumption of 

a common distribution, Watson [15]  proved  that  under slight restrictions the 

limiting distribution of the maximum term in a stationary sequence of in- 

dependent random variables is the same as in the independent case,  and Berman 

[2] studied exchangeable random variables and  samples of random size.    A 

bibliography and discussion of applications  is  contained in the book by Gumbel 

[9]. 

This paper extends the classical theory.  The second section introduces 

a model from reliability theory - essentially a series system with replaceable 

components.  It is shown that the asymptotic distribution of system lifetime 

can belong to one of two types when the number of spares is fixed or of a 

smaller order than the total number n of components, as n becomes infinite, 

and that these limiting distributions are the same as those obtained by 

Gnedenko, Chlblsov [4] and Smirnov.  Sections 3 and 4 deal wl:h the limiting 

distribution of order statistics when the assumptions of common distribution 

and fixed sample size are dropped.  The results of these three sections are 
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then applied In Section 5 to  the superposition of a  large number of renewal 

processes and compared to the necessary and sufficient  conditions of 

Grlgelionls   [8]  concerning closeness to a Polsson process.     In particular, 

it is shown that randomness of the sample size leads  to a point process which 

is a mixture of nonhomogeneous Polsson processes.    Finally,  in Section 6, an 

attempt is made to put extreme value theory into a more general framework 

using the notion of a coherent  structure [1].    As noted there, most of the 

classical problems in extreme value theory are contained in the following 

general question:    "Given a coherent structure with a  finite number of compon- 

ents and some procedure to Increase the number of components without bound, 

what are the possible limiting distributions for the structure lifetime for 

given component lifetime distributions?"    For example,  the minimum of a set 

of    n    random variables corresponds to the lifetime of a series structure of 

n    components, and the limiting procedure adds one component at a time to the 

structure.     In addition,  the class of limiting distributions is characterized 

for the case of an arbitrary coherent structure when the procedure for expan- 

sion is that of repeated composition. 



1.  NOTATION AND CLASSICAL RESULTS 

Throughout this paper, the distribution function of a random variable X 

will be denoted by P{X £ x} ■ f(x) , and the tall of the distribution by. 

P{X > x} - ?(x) .  The abbreviation "d.f." will be used for distribution 

function.  A d.f. will be called proper  if: 

lim F(x) - 1 , lim Fvx) « 0 
X-x» X-*-" 

and not all its mass is concentrated at one point. Two d.f.'s F.(x) a.d 

F2(x) are said to be of the same type if  there exist constants A > 0 and B 

such that:  F. (Ax + B) ■ F2(x)  for all values of x .  Unless otherwise stated, 

all d.f.'s will be assumed proper and all limiting d.f.'s should be taken to 

mean limiting types of d.f.'s.  Let X.IX7, ..., X , ...  be a sequence of 

independent random variables with common distribution F(x) , and let 

5 ■= min(X. ,X2 X ) . Then the limiting d.f. of 4  belongs to exactly 

one of three types, [6]; that is to say, if there exist sequences of normalizing 

constants  {a > 0} and {b } and a d.f. G(x) such that: 
n n 

lim Pa"1 (C - b ) < x 
_ | n   n   n — 

G(x) 

at each continuity point of G(x) , then G(x) belongs to one of the following 

types: 

♦ (1j(x) - 0 f or x <_ 0 

- 1-exp [-x ] for x > 0 , a > 0 

(1.1) *(2)(x) ' 1'exp t~(~x)'al      for x < 0 , a > 0 

• 1 for x 2. 0 

♦,-v(x) - 1-exp [-exp x]       -« < x < « 



The domain of attraction  ui a  limiting d.f. G(x)  is the set of all d.f.'s 

F(x)  such that for suitable choice of normalising constants {a > 0} 

and {b } n 

(1.2) lim Fn(a x -f b ) - G(x) . n    n n-*» 

By a well-known theorem of Khintchlne (e.g., see [7], p. 40), each d.f. can 

belong to at most one domain of attraction. Necessary and sufficient condi- 

tions were given by Gnedenko [6] for a d.f. to belong to the domain of 

attraction of *.1v(x), Q/j)^*)    or *n^x^ *  For example» F(x) 1* I*1 

the domain of attraction of ♦,,vU) if and only if 3 x  such that 

F(x ) - 0 , F(x + c) > 0 for each e > 0 and 
o        o 

F(x + tx) 
(1.3) lin  ( 

0        > - ta      for all t > 0 . 

The k  smallest variable from (X. ,X., ..., X ) will be denoted by C   > 
ii n n 

so that    C        m i    i  limiting d.f.'s for these random variables as obtained n n ' B 

by Smirnov and Chibisov will be introduced as needed. 

The notation    f(x) - 0(g(x))    as    x -► a    will mean    |f(x)/g(x)|   <^ k < » 

as    x -> a  , and    f(x) * o(g(>))    as    x -♦ a    will be used to denote that 

f(x)/g(x) -► 0    as    x -► a  .    Likewise    f(x) - g(x)    as    x ->• a    implies that 

f(x)/g(x) -► 1    as    x -♦ a  . 

♦ (x)    will be used for the standard normal    (0,1)    d.f. 
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2.  STRUCTURES WITH REPLACEMENT 

The problem that Is Investigated here Is the following: a system con- 

sists of n Identical and Independent components In series, with in Inactive 

«pare components available which Instantaneously replace the components as 

they fall, until there are no more spares, whereupon the pystem falls. The 

system lifetime will be denoted by n    , (m + 1) being the total number 

of component failures which must occur before system failure. The Investiga- 

tion Is In two parts, corresponding to the cases when m ■ m(n) Is of a 

smaller order than n or of the same order as n , and a third subsection 

describes how some of the results may be carried over to more general types 

of systems. It Is assumed In this section th:>.    F(O-) = 0 . 

Extreme Terms 

nm     i n Let Gnm(x) ■ Pjn,,    .1 x} • Then it is shown that the class of limiting 

d.f.'s for the system lifetime as n -* » , with appropriate linear norralng 

constants, Is the same as the limiting d.f.'s of the corresponding order 

statistics provided that m Is finite or of smaller order than /n , as In 

the following two theorems. 

Theorem 2.1; 

The limit laws for sequences G (a x + b ) of system lifetime d.f.'s, n       nm n   n     -^ ' 

with m fixed, are exhausted by the following two types: 

«[^(x) - 0 for x < 0 

a 

r 
(2.1) - , _ jw  / e"y ym~ dy      for x > 0 , a > 0 

x e. 
M) fv\ 1     /  -y m-l . W0   (m- D! J e  y   dy ~   <*>   <   \   <   m 



Theorem 2.2; 

If o "■ en  , with c>0,0<a<'i, then the only possible limit 

d.f.'s for the sequence G  (a x + b ) are: ^      run n    n 

G(1)(x) - «Kx) 

(2.2) G(2)(x) - 0 

*(ßlogx) 

for x £ 0 

for x > 0 , ß > 0 

Notice that G.-vCx) Is the log normal d.f. 

Some preliminary results are needed before the proofs of Theorems 2.1 

and 2.2 can be given: 

_* m 
(2.3)  G^x) - I 

n ( (1 )      (1+1)  ) 
n F K (x) - F K  (x) . 

j-0 ^ + ... + in-j k-l( 

,(« Where F  (x) is the k-fold convolution of the d.f.  F(x) and the Inner 

summation Is over all nonnegative combinations of  (1, ,1„ 1 ) which x    & n 

sum to J . This formula follows from the superposition of n Identical 

renewal processes. 

The d.f. F(x) will be assumed to be concentrated on the nonnegative 

real axis in this section since the concept of component lifetime is meaning- 

ful only in this case. Use will be made of the inequality 
I ; 

(2.«)      F(k)(x) < {F(x)}k , V  k>l, V  x^O. 

It is convenient to speak of n "sockets" in series, each of which must 

contain a working component for the system to work. When m is not too 

large, a key step in the proofs will be to show that the probability of two 

or more Tallures in any socket is negligible as n ->■<»> . Define 



m 

. 

(2.5) GU) -    I    (")   Fn"J(x)  ^(x) 

i.e. ,   the survival probability of an     (m + 1) -out-of-n system. 

Theorem 2.3; 

If m ■ o(n ) as n -•■ <» , and if {a > 0} and {b } are sequences of 
n n 

normalizing constants such that 

F(a x + b)«=o(n ) as n-*-«, V x^O, t.;en 

(2.6) lim IG (ax+b)-G (ax+b)l=0, V x>0. 1 nm n    n    nm n    n '    *     — n-Ko 

The proof of this theorem will depend on the following lemmas. 

Lemma 2.1: 

Proof; 

(i)  The number of ways in which J failures can occur, in such a way 

that at most one failure occurs in each socket, is (j) • 

(ii) The total number of ways in which j failures can occur, the 

number of failures in any socket being arbitrary, is f   ^    J 

(1)  Follows by considering the coefficient of Z^  in (1 + Z)n . 

(ii) Follows by considering the coefficient of Z^  in 

(1 + Z + Z2 + ...)n - (1 - Z)"n . 

Lemma 2.2: 

I^ 0 ^ j £ m , and m - o (n )  as n -»• » , then 

(?)/(" T1) -♦■ 1 , as n ->■ o" . 



Proof: 

^rn-S^M'-^r 

for n sufficiently large. 

-► exp. l-tZ]   , 

where c > 0 Is arbitrary. The result follows on letting e -* 0  . 

Proof of Theorem 2.3; 

Define the following notation: 

2) unj (x)  - Fn"j (x)  ¥* (x) 

3) vnj(x)  - Fn"J(x)   {F(x) - F(2)(x)}J 

A)    w_.(x)    will be used for all terms of the form: 

c!i F   (X)-F k   ^ • 

(2.7) 

Now: 

.* 
G 
no 

where 1. + ... + 1 ■ j f^d  at least one of the !,> 2 . Notice 

from (2.4) that: 

0 1 v^ (x) 1 ". (x) , 0 < v    (x) < u. (x) . - nj   - nj      - nj   - nj 

"^'"■LlfO.^v.«!)/^ (,%<«). 

. 



But: 

Also: 

<    I    A  .w  .(x)/i      ?)un.(x) 

< max A    w    (x)/(.)u  .(x) 

-v 0  ,  by  (2.7)  and Lemma 2.2, 

0il-jo(^W/Jo(>^W 

■j0GKiw-V'<)l/J0(;KJ« 

< max [u^.(x) - v     (x)]/u    (x) 
~ j       « nJ nJ nJ J  = 0 ni J J J 

1 -   [1 -  F(2)(x)/F(x)]m 

«m < 1 -   [1 -  F(x)]u   ,  by use of   (2.4)   . 

Now if    x    is replaced by     (a x + b )    and  the second assumption of  the 
n    n 

theorem used, it is seen that the last term approaches zero as n -*■ '»  . 

Combining results: 

.-* 
IG (a x + b )/G (a x + b ) - ll -•• 0 , as n -► « , 1 nm n    n  nm n    n    ' 

and since d.f.'s are bounded, the theorem is proved. 

Proof of Theorems 2.1 and 2.2: 

To examine the possible normalizing sequences {a } and {b } which 

satisfy the conditions of Theorem 2.3, it is necessary to consider separately 
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the cases where m remains finite or m -♦ « .  Suppose firpt that m remalnc 

finite.  Then Smlrnov [1A] has shown that In order for 

(2.8) G (a x + b ) -♦ G(x) 
nm n    n 

for suitable choice of normalizing constants, where    G(x)    Is a proper d.f., 

It Is necessary and sufficient that 

(2.9) v  (x) - nF(a    + b ) -> v(x) n n        n 

where v(x)  is a nondecreasing nonnegative function defined by 

vjx) 

(2.10) (m I 1)t J       e-y y"-1 dy - G(x) 

Now suppose that m - en , where c>0j0<a< Jj.  Chibisov [4] 

has shown that G  (a x + b ) -»• G(x)  if and only if 
nm n    n    ' / 

(2.11)       u (x) - in* {nF(a x + b ) - m} -► u(x) 
n n    n 

where u(x)  is defined by the equation. 

(2.12) G(x) - *(u(x)) 

and * Is the normal  (0,1) d.f.  The function u(x) must be of the same 

0 

Furthermore, he proved that (up to a linear transformation) the function 

v(x) must be one of the three forms x , (-x)   or e  , where a is an 

arbitrary positive constant. The domain of attraction corresponding to the 

second form for v(x)  consists of d.f.'s which are unbounded below, so that 

on using Theorem 2.3 and the nonnegativlty assumption on the  {X.} , Theorem 

2.1 is proved. 
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type as one of x , ßlogx or -01og|x| , where ß > 0 is an arbitrary 

constant, and the domain of attraction corresponding to the third form contains 

only d.f.'s which are unbounded below.  For a normalizing sequence which sat- 

isfies (2.11), it is clear that F(a x + b ) - 0(n  ) - o(n Q) ; thus the 
n    n 

conditions of Theorem 2.3 are satisfied and Theorem 2.2 is proved. 

Similarly, characterisations of the domains of attraction of these limit 

d.f.'s may be made.  Kote also that one might wish to restrict the limiting 

In* itself to correspond to a nonnegative random variable, thus eliminating 

one of the types in Theorems 2.1 and 2.2. 

The assumption that the spares have the same lifetime d.f. as the original 

* * ~U 
components is unnecessary; any d.f. F (x)  such that  F(ax+b)=o(n ) 

will suffice.  The appropriate modifications to the proof of Theorem 2.3 

present no difficulty. 

It would be desirable to relax the restriction a < ^ which appears in 

the conditions of Theorem 2.2.  Results may be obtained for a < 2/3 as 

described by Lemmas 2.3 and 2.A, but the more general case a < 1 does not 

seem amenable to analysis and a counter-intuitive reason for this is given in 

Lemmas 2.5 and 2.6. 

"st" 
Let the symbol   >^  stand for "stochastically greater than". 

Lemma 2.3: 

For independent,  identically distributed nonnegative component random 

variables: 

r(m)  st    (m) st   .(m) 
Kn       -  \      -  Cn+m 

where the t's are the corresponding order statistics. 
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Proof; 

The first part of the inequality follows by observing the replacements 

themselves may fail, thus giving rise to more failures; the second part by 

observing that time to system failure decreases if the spares are subject to 

failure from the initial instant. 

Lemma 2.A; 

If m - cna  ,  with c > 0 , »s ^ ot < 2/3 , then the limit d.f.'s (2.2) 

* 
are possible for the sequence G  (a x + b ) . r n      nm n    n 

Proof: 

Suppose that F and (a >0}, {b } are such that (2.11) and (2.12) hold, 
n      n 

so that 

(2.13)      F(a x + b ) -= m/n + u(x)vWn + o(4/n) 
n    n 

Then 

(n + m) F(a x + b ) - m .,- 
(2.1A)  s 2  - u(x) + 0(mJ/7n) - u(x) . 

Thus both a"1 U^     - h]   and a'1 (c^ - b ) have the same limiting d.f. 
n  v n    n/      n  \ n+m   n/ 0 

and hence by Lemma 2.3 so does a  (n   - b I . Thus with Chibisov's results, 
n  \ n     n / ' 

the lemma is proved. 

It should be noted that although Lemma 2.A shows that the limiting d.f.'s 

(2.2) are possible, it does not rule out other limiting d.f.'s. In constrast 

to the results of  Theorems 2.1 and 2.2. 

Lemma 2.5: 

The number of ways that m failures -an occur In n sockets with at 

most r failures per socket is 
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[m/(r+l)) 
C(n,m,r) "   Jo       ^H   "    / ' 

where  [x]  denotes the largest integer less than or equal to x . 

Proof; 

The form of c(n,m,r)  follows by observing that it is the coefficient 

of Z  in: 

(i + z + z2 + ... + zr)n = (i - zr+1)n (i - zrn . 

Let c(n,m) «= 1        I — the total number of ways that m  failures 

can occur in n sockets. 

Lemma 2.6; 

If    m -  en    , where    c>0,0<a<l,  and    r    is  fixed,   then 

c(n,m,r)/c(n,m) -> 1    as    n -► «    provided    r >^ [1/(1 - a)]   . 

Proof: 

Write c(n,m,r) = a - a. + a» - ... (-)  a  , where a - \Ä\      ~X ) 

and s - [m/(r + 1)] .  Then: 

al   i ->- 1   (n+m-ri-i-1)!    (m-ri-r-i-2)! 
ai+l " n " 1   (m-ri-i-1)!  " (n-m-ri-r-i-2)! 

- n - i     m-ri-i-l 

> i ji +_n^]r+I ..4^ . say 
— n (   m - 1)    p(n) 

Then p (n) ->■ 0 as n -♦• «o provided  (r + 1) > (1 - a)   . Wow 



-«^-.frffr*-*.'■■^.«■»f ^"»^|Wt"Wym: 

• 

14 

|c(n,in,r)/c(n,m) - 11 •= |^o - aj + a2 - ... (-)Sa8)/
a
0 " ^-l 

£ |(a. + a- + ... + a )/a j 

2        s < p + p + ... + p 

■ p(l - P )/(l - p) * 0 as n -> o" . 

Thus for the case ni~cn  , 0 < a < 1 , although It Is tempting to think 

that one need only consider at most c.ie failure per socket in the limit, 

Lemma 2.6 shows that a large number of the total ways of failure actually in- 

volve more than one failure per socket. 

Central Terms 

The results obtained In the first part of this section are for the 

limiting d.f.'s of extreme terms in which the number of spares is of a smaller 

order than the number of components in the system; this part treats the cen- 

tral terms where the numbers of spares and components are of the same order. 

It Is shown in Theorem 2.5 that under fairly weak conditions the limiting 

d.f. of a  (n   - b ) , for appropriate choice of a  > 0 and b  , is n\n     n/       rr    r n n» 

the normal d.f.  For simplicity of notation, it is assumed that m = n - 1 

although It is obvious that Theorems 2A  and 2.3 hold with slight modifica- 

tions when m - m(n) is such that m(n)/n -»■ X , 0 < A < » . 

Definition: 

Following Kolmogorov [11] and Smlrnov [14], a sequence  {X } of random 

variables Is said to be stable  if 3 constants a  such that n 

P{ |x - a I < e} ->■ 1 , as n -► oo , for each fixed e > 0 . 

Theorem 2.4 demonstrates the stability of the sequence of system life- 

(n) time under mild  restrictions.     Some additional notation is needed; 
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let N.(t) denote the number of component failures In the 1  socket up to 

n 
and Including time t , 1 < i < n , S (t) ■• J N. (t) the total number of 

n iml    i 

2 
failures.    Set    p(t) - E{Ni(t)}    and    o (t) - Var{N (t))    as the mean and. 

variance of   N. (t)  .    It is veil known that renewal counting functions   N.(t) 

have finite moments of all orders for each fixed    t    so that the existence 

of   u(t)    and    o(t)    is guaranteed. 

Theorem 2.4; 

If u(t)  is Increasing in a neighborhood of t ■ ii~ (1) , then the 

sequence  jn  j  !■ stable. 

Proof; 

Fix e > 0 and let t. be the unique t such that w(t) - 1 . Then 

ri " e < nnn) * 'i + c <m>  |Sn(tl + c)/n - 1 > Sn(tl " c)/nl * 

For arbitrary c > 0 , P{|Sn(t)/n - p(t)| < c } -♦ 1 , as n ■* • , for all 

finite t , by the weak law of large numbers. Thus 

P{S (t. + c)/n > M(t. + c) - e ) -► 1 , and by choosing e  sufficiently small, 

it is clear that w(t. + e) - c > 1 and so P{S (t. + c)/n > 1} -»• 1 . x •— n    i        ' 

Similarly.    P<Sn(t1 - €)/n < 1} -► 1  , so that finally 

(2.15) pj|n^n) - tj   < cj - 1 . 

In /act, Theorem 2.4 can be replaced by A stronger result that is 

analogous to the strong law of large numbers, viz. Pjlim n   ■ t.l - 1 . 

The proof of this is similar to that of Theorem 2.4 with the strong law of 

large numbers applied to the sum S (t) . 

^MM 
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Theorem 2.5: 

If p(t) has a positive first derivative v'Ct) at t1  then 

/n(n   - tj) has a limiting normal d.f. with mean zero and variance 

Mt^/y'^)}2 . 

The proof of this theorem depends on: 

Lemma 2.7; 

If p(t) is continuous at some point t.. , then o(t) is continuous 

at t. . 

Proof: 

Assume that    p(t)    is continuous at    t1   ;   then from the following 

representation  (e.g.,   see  [1],  p.   5A) 

t 

(2.16) o2(t) - 2 /y(t - x)dw(x) + u(t) -  {y(t)}2 / y(t - x)dp(x) 

0 

It suffices to show that the first term in this expression — denoted by 

v(t) — is continuous at    t..   .    For small    h 

(2.17) v(t1 + h) - v(t1) - 

T } I     u(t1+h-x)dw(x) + I [^(t^h-x) - u(t1 - x) 

t1 

The first term in (2.16) is not greater than u(h)[y(t1 + h) - w(t1)] , 
1        1 

I 
which becomes arbitrarily small as h -♦■ 0 by continuity of p at the point        i 

t. . The second term will give a nonnegligible contribution only if y has 

discontinuities at both t, - x and x , for some x , 0 < x < t, . However,        1 1 '        1 ' 

since 
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(2.18) U(t)   -     I    F(i)(t)   , 
1-1 

this means that    F      (t)    ia discontinuous at    t.. - x  , for some    1  , and. 

F^'(t)     la discontinuous at    x  ,   for some    j   , so that    F      ^   (t)    Is dis- 

continuous at    t1    and this with  (2.18)  contradicts the hypothesis.    Thus, 

a    Is  continuous at the point     t,   . 

Proof of Theorem 2.5: 

For fixed    x 

(2.19) 

<■> 

j^(n^n) - tj > xj   ^>   jsn(t1 + x/^)   < nj 

5   (t. + x//n) - np(t-  + x//n)      n - ny(t.  + x/Zn) 
n    i i i 

/nc^t. + x/Zn) ^(t. + x//n) 

Now S (t. + x/i/n) may be written In the form  I X . , where 
k=l 

X . = N, (t. + x//n) ; it is clear that the {X . } are Independent, 

identically distributed and have finite moments of all orders. Thus, a 

modification of Liapunov's version of the central limit theorem 

(see [12], p. 277) may be applied to give: 

[s (t + x//S) - ny(t1 + x/*^) 
(2.20)     Pf-3—i ~ lu>>*(u) 

/naUj^ + x//n) 

where, as before, * is the normal  (0,1) d.f. 

Now ;j(t, + x/i/n) may be written in the form 

(2.21)   y(t1 + x//^) - w(t1) + (x/^)y'(t1) + o(l/^) , 
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as n -* " . Also, from Lemma 2.7, 

(2.22) 0(1^ + x/v^n) -♦ o(t1) . 

Combining (2.21) and (2.22) 

n - nuU + x/Zii)    /xy'd: )\ 
(2.23)  *  ^ -I  ,, M • 

^o(t1 + x//S)     \ 0(tl) / 

Since the normal d.f. is continuous, the conclusion of the theorem follows by 

substituting (2.20) and (2.23) into (2.19). 

It should be noted that the proof of the theorem is not sensitive to the 

assumption of common lifetime d.f. for r^ch of the original and spare components. 

All that is needed is a central iimit theorem to hold for the sum 

S (t1 + x//n)  and convergence of the appropriate se luence of constants as 

in (2.23). 

Examples; 

-Xt 2 
1. Suppose that  F(t) » 1 - e   , so that \i(t)  ■ o (t) ■ At .  Then 

/nln   -  \    j     has a limiting normal d.f. with mean zero and 

-2 
variance X   .  In fact, this result can be obtained quite simply 

by observing that the times between consecutive failures are in- 

dependent, identically distributed exponential random variables. 

2. Nonldentical components. Suppose that the original components have 

t 

'/' 
lifetime d.f.     F  (t)  - X I F(x)dx    and  the spares have lifetime d.f, 

Tit)   , where    F(t)  - 1 -  (1 + 2Xt)e"2Xt    is a gamma d.f.    Thus,   the 

sequence of  failures  in each socket corresponds to an equilibrium 

renewal process,  so  that    p(t) = Xt    and    a   (t) ■ Xt/2 + 1/8 e~ . 
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Then /nln   - X     j     has a limiting normal d.f. with mean zero and 

variance (1/2 + 1/8 e"A)A 2 

k-out-of-n Structures 

The methods of this section c.-a be applied to more general types of 

systems with replaceable components.  For example, consider a k-out-of-n 

system with m spares where, as before, the component lifetimes are assumed 

to be independent and identically distributed. As components fail, they are 

Immediately detected and replaced by new components until m replacements 

have been made; the system fails when k additional failures have occurred, 

i.e.,  k + m in all. Let the system lifetime be denoted by C 
(m) 
nk ' 

Lemma 2.8: 

If k + m £ n , then 

(k+m) ^t  (m) Qt (k) 
n    ~  nk  — n 

Proof; 

The first part of the inequality is proved as in Lemma 2.3, and the 

second part by observing that a system with spares survives longer than a 

system without spares. 

Lemma 2.9: 

If k + tn < n , then 

r(k+tn) st r(m) st (k-hn) 
en    - Cnk - nn 
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Proof: 

Only the second part  remains  to be proved;   this  follows by noting  that 

between the m      and     (k + m) failures  there are fewe:   than    n    components 

liable to failure and so system failure Is stochastically larger than in the 

case where replacements  are continually available. 

Making certain assumptions about the behaviour of    k ■ k(n)    and    m ■ m(n) 

aa    n ■+ »    enables some deductions to be made concerning the limiting d.f.'s 

of    a     K ,     - b   1  .     For example,  consider  the  two cases; 

(I) m/n -♦ 0   , k/n -*■ \  , 0  < X  < 1   .     By using Lemma 2.8 and  the results 

of Smlrnov  [14] concerning limit d.f.'s of central order statistics, 

the limiting d.f.'s of system lifetime may be completely character- 

ised. 

(II) (k + m)     finite or    (k + m)  ~   en0   ,   c > 0 , 0 < a  < 1/2   .    Then 

Lemma 2.9 and Theorems 2.1 and  2.2 enable one to describe completely 

the possible limiting d.f.'s. 
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3.  ORDER STATISTICS FROM A NONHOMOGENEOUS SAMPLE 

In this section, It Is shown that the limiting d.f.'s for order statistics 

of fixed rank from an Independent but not identically distributed sample are 

essentially derived from the limiting d.f. of the minimum as in the identical 

case.  Suppose that X.  has d.f.  F. (x) , then Juncosa [10] has shown 

Lemma 3.1; 

If  A(x) is a positive, nonconstant, nondecreasing function such that 

for suitable {a > 0}  and  {b } : 
n n 

n 
(3.1) lim J F. (a x + b ) = A(x) 

. t', k n    n 
n-x» k=l 

and 

max F1(ax + b)->0,V     x, ,  .       k    n n ' 
l<k<n 

then 

n 
lim PU    > a x + b  } » lim    H    F. (a x + b )  •= expt-A(x)] 

nn n ,,kn n k=l 

Theorem 3.1: 

If  the conditions of Lemma  3.1 are satisfied,   and    m    is fixed,   then 

11m P|C 

The  following lemmas are needed: 

Lemma 3.2; 

If    u,     i 0  i V
K    i 0    are such that! 

i^aa 
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(i)  ukn -> u . uniformly In k , 1 < k ^ n . and 

n 
(ii) JlVkn " V * aS n ^ " • where u and v are finite, then: 

(3.2) I \v 
k=l kn kn 

uv , as n -> <» 

Lemma 3.3: 

If dkn>0 is such that  max d  -> 0 and  J d,  ->A(x). 
l<k<n k=l 

n -> » , then: 

as 

(3.3) Um J d.d.   ... d L      ^n k2n    
ak n   j! 

A^x) 

where J  Is a sum over all k  such that 1 1 ^ < k2 < ... < k < n . 

Proof; 

The result holds  for    J  = 1  ,   so assume the inductive hypothesis that it 

holds up to    j  - 1   .     Clearly 

(3.4) 5       )i 
I dJ    - AJ(X)   . 

lk-1 kn 

Also 

jAn]3-^i'vv-dv + I Terms  containing 
^squares and higher| 

powers of    d. 

It is easy to see that  the second  term above is asymptotically negligible. 

For example: 

\2 
k^k^n   ' I <A 1. <    max    d,      •   T d,     d A 

j-1        l<k<n ^j-r 



23 

and  the right hand side  tends  to zero  from  the  inductive hypothesis  and  the 

assumptions of  the  lemina.     The conclusion  follows  by  comparison of  3.A  and 

3.5. 

Proof of Theorem  3.1: 

Let: 

(3.6) Gnm(x)  = P,Mm)  > x!  =    £ A.   (x)   , nm (  n ) ^0 jn 

where 

* n    i 1-1 
(3.7) A     (x)  =  I    n  Fk

K(x)   F       k(x)   , 
J k=l 

and  )  is the summation over all terms such that  1, + i- + ... + i •» 1 L 1   2 n  ■' 

and i. = 0, 1 . Now A. (a x + b ) may be written in the form ) u v k Jn n   n    7 ^ rn i 

where 

n 1-i n i, 
(3.8)          u  = n F.  K , v  = 11 F,  , rn  , , k   ' rn  , , k  ' 

k=l k=l 

r     is a symbol  for  the  partition    r =   (i   .i»,   ...,   i  )   ,  and the argument   is 

emitted but understood  to be    a x + b    .     Since    u        differs  from 
n n rn 

n 
n  F, (a x+ b  )    by only a finite number of factors,  Lemma 3.1  implies 

k-1 

(3.9) u     (a x + b  ) -•• exp.   [-A(x)]   , uniformly  in    r   . rn n    n 

If d,   is Identified with  F. (a x + b ) , the conditions of Lemma 3.3 are kn k n    n 

satisfied, and so 

(3.10) y*v  (a x + b W ^-M . 
^ rn n    n    j ! 
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Application of Lemma 3.2 together with 3.9 and 3.10 then gi ves; 

.       (3.11) VanX + V  *  exPM(x)]   • ^-    . 

The proof of   the  theorem  is  complete 

« 
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4.  ORDER STATISTICS FROM A SAMPLE OF RANDOM SIZE 

Consider a samp le    (Xj.X, ,   X     \     of  independent  random variables 
n/ 

with common d.f.  F(x) , where N  is a random variable distributed 
n 

independently of the     {X }  .    Assuming that    N    •♦ »    in probability as 

n •♦ «  ,   the order statistics    (, are defined with probability one  for 

fixed    m    as    n -* <*  .    To avoid writing conditional expectations it  is assumed 

below, without  loss of generality,   that    N    j^m  .    Theorems 4.1,   A.2 and 4.3 

characterize the limiting d.f.'s of  these order statistics and extend the 

results of Herman   [2]   who obtained  the  limiting d.f.'s  of  the maximum under 

such conditions.     Let: 

(4.1) Pjn    Nn < yj = An(y) 

and assume that  there exists a d.f.    A(y)   ,  which may be improper,   such that 

for all    y    in its continuity set: 

(4.2) lim An(y)  = A(y)   . 

To ensure that the limiting d.f.'s are proper, A(y) will be required to 

satisfy one of: 

(4.3) 

(4.4) 

(4.5) 

A(0+) - A(O-) = 0 ; A(°°) - A(O-) > 0 

A(0+) - A(O-) < 1 ; A(«) - A(O-) -= 1 

A(0+) - A(O-) -= 0 ; AC») - A(O-) •= 1 

Theorem 4.1; 

If    F(x)     is  in the domain of attraction of    «-.^(x)   ,   then    a'Mc        - b   ) 
(l) n \ n    n' 

has a limiting d.f.  G(x) which is necessarily of the type: 
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G(x) ■= 0 for x < 0 

m-l f.    a. 
exp [-yx ]dA(y)       for x > 0 , a > 0 

where A(y) satisfies condition (4.3), 

Proof; 

Let G (a x + b ; = Pa" (?   - b ) < x  , so that 
nm n    n    ( n \ n    n/ — ) 

(A.6)  G (a x + b ) = EM! \  (^^(a x + b )FJ(a x + b ) nm n    n    Nj ^0\j/     n    n    n    n 

where £„(•) denotes expectation with respect to N and the constants {.=•. } 
N n 

and {b } are such that: 
n 

(A.7) r.n llm F (a x + b ) * «/^(x) , V x 
n    n    u; 

It Is easy to show that llm G (ax + b)"0 for x < 0 ; consider one of nm    n n — 

the  terms In the sum  (A.6) with    x > 0  : 

U.8) EN|(»)-F,,-V + VFl<V + b„>!- 

J'      -F(ax + b)pi „J F(V + bn>i- 
V        n n / 

From  (A. 7),     llm F(a  x + b  )  =  1    and    llm nF(a x + b  )  - -lo?$ ..AY.)   ,   so 
n n n n ^  (1) 

for  the  first factor  in   (A.8) 

(A.9) 
nF(a x + b  ) 

nrirnry  -<-i^a)W>3 
n n 
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lim EN n'
jN(N - 1)...(N - j + l)e"Sn NU lim EN (n"^)^"

5" N; 

(4.10) 

oo 

lim | y;'e"SydAn(y) 

= / yJe"SydA(y) 

for s > 0 , by the extended Helly-Bray lemma. What has been shown so far is; 

(4.11) 

oo 

/ 

00 

g(y)dAn(y) -> / g(y)dA(y) 

where g(y) = y exp[-sy] ; now let  g (y) = yJ exp[ny logF(a x + b )] . 

Then since -n log F(a x + b ) -> -log^.-^x) > 0 , for x > 0 , it may be 

shown that g (y) -> g(y) uniformly in y  for each fixed x > 0 as n -•• 0° , 

with s = -log* ,.... (x) .  Hence 

(4.12) 

00 00 

y gn(y)dAn(y) W i i(y)dAn(y) •> / g(y)dA(y) 

which is the limit of the second factor in (4.8); combining this with (4.6), 

(4.9), (4.12) and (1.1), the main part of the theorem follows. 

Uniqueness of the limit d.f. follows from Khintchine's theorem [7] that 

a sequence of d.f.'s {F (a x + b )} can have at most one proper limit type, 

(4.3) follows from the conditions G((H) < 1 and G(tE) = 1  that the limit 

d.f. be proper. 
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Theorem 4.2, 

If F(x) Is in the domain of attraction of «^^(x) , then 
(2) 

^  (C    ~ bn)    has a uniting d.f.    G(x)    which  Is necessarily of the  type 

OD 

G<X) " ' - Xf^f^ "P'^<->-0HA(y) for    x < 0 
0 

for x >^ 0 , a > 0 

where A(y)  satisfies condition (4.4). 

Theorem 4.3; 

If F(x) Is In the domain of attraction of Qf^(x)   , 

n (Cnm " bn) has a limltlng d.f.  G(x) which 1 

(3) then 

s necessarily of  the  type 

m-l */*/    x.J 
G(x).l-     l  JÜSU.   exP[-ye

x]dA(y) 
m-l 

-«   <   X    <   o» 

where A(y) satisfies condition (4.5). 

The proofs of Theorems 4.2 and 4.3 are analogous to that of Theorem 4.1, 

Conditions (4.4) and (4.5) follow by considering G(0-),G(-») and G(-oo), 

G(+oo) respectively. 
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5.  APPLICATION TO SUJ'l'RPOSITION OF RENEWAL PROCESSES 

Necessary and sufficient conditions for a sum of a large number of re- 

newal processes to be close to a (nonhomogeneous) Poisson process have be^n 

given by Grigelionis [8],  he considers n general renewal processes, where 

F (x)  and F (x) are respectively the d.f.'s of time to the first event nr nr r      ' 

and between subsequent events,  1 .1 r £ n . Under the condition 

lim max max {F (x) , F  (x)} = 0 , for all x , he proves nr     nr       ' '   v 

n  r 

Theorem 5.1; 

For the superposed process to converge as n ->• oo to a Poisson process 

with parameter A(x) , It is necessary and sufficient that 

n A 

[ F  (x) -> A(x)     V x > 0 . 
r-1 nr 

It Is of interest to know what form the function A(x) may take when 

the underlying renewal processes are identical and 

F (x) - F (x) •= F(a x + b ) , 1 < r < n , where {a > 0} and {b } are nr     nr       n   n    —  — n n 

suitably chosen constants. F(x) is a fixed d.f. on the nonnegative real 

axis, and it is convenient to assume that F(c) > 0 for e > 0 and take 

b - 0 . The following result is suggested by Theorem 2.1. 

Theorem 5.2; 

If the sum of n identical renewal processes converges to a Poisson 

process with parameter A(x) , then A(x) - ax0 for some a > 0 , o > 0 . 

Moreover, F(x) is in the domain of attraction of *m(x) . 
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Proof! 

Observe that the first event in the sum proross is the same as the 

minimum of a set of n independent and identically distributed random 

variables, so that Gnedenko's results show that this minimum has a limiting 

d.f. which is one of those in (1.1). However, the d.f.  O.-^x) can be 

ruled out because its domain of attraction contains only d.f.'s corresponding 

to random variables unbounded below [6]. Moreover,  <l>.-v(x)  is a d.f. on 

the whole real axis and so cannot generate a renewal process. Thus the 

limiting d.f. of the minimum must have a d.f. of the same type as *..... (x) 

which corresponds to a Poisson process with parameter A(x) = ax 

In fact, the same form for A(x) holds under wider conditions than 

those above. Suppose F(x)  is in the domain of attraction of «'.....(x) —see 

Section 1— so that 

(5.1) 11m F(tx) / F(x) = ta , a > 0 . 
x->0+ 

Let 

(5.2) F (x) = F (x) ■= F(Y a x) , 
nr      nr      ' r n  ' 

so that In the terminology of Section 2 one may think of identical components 

which are subjected to different levels of stress in different sockets. 

Assuming that 

(5.3) I    Y" - * and Y_ "= of J Y" I , 
r-1 r \r-l 7 

then if a  are chosen to satisfy 
n 7 
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(5.4) in = jinf x   |   F(x) L iji   I    ya 

It may be shown  (bee   [10])  that 

(5.5^ y    F(Y a x) -+ x    . t,       'r M 
r-l 

Hence,  Grlgellonis'   conditions are  satisfied,  and one has: 

Theorem 5.3: 

The sum of n renewal process of the form specified by (5.1), (5.2) 

and (5.3) converges to a Poisson process with parameter A(x) = ax 

Now suppose that the number of renewal processes is itself a random vari- 

able N -i, -1 the case if  order statistics in Section A.  Using the 

notation of that section: 

Theorem 5.A; 

The sum of a random number N  of identical renewal process of the form 
n r 

F (x) - F (x) = F(a x) , where F(x) satisfies (5.1) and  {a > 0} are nr     nr       n n 

suitable constants, converges to a counting process as n -► ^ in which the 

d.f. G (x) of the time to the m  event is given by 

G(x) - 0 
m 

for x < 0 

m-1 /', a 

- I l1^ a)J ^- exp[- yx ]dA(y) for x > 0 

where A(y) - 11m Pjn N £ yj  satisfies 

(5.5) A(Of) - A(O-) - 0 ; A(») - A(O-) »= 1 
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Proof: 

A corresponding result for order statistics from a random sample has 

been proved in Theorem 4.1} it remains to be shown that the d.f. of the m. 

order statistic in such a random sample is asymptotically the same as the 

d.f. of the m  event in the superposed process.  From (5.5), k and K may 

be chosen,  0<k<K<«o,so that Pjk £ n~ N <_ K} > 1 - e , where  e > 0 

is arbitrary.  Then for each N  in this int( rval the asymptotic closeness 

of the two limiting d.f.'s in question may be shown as in the proof of 

Theorem 2.3.  Unconditioning on N  and letting c -* 0 , the desired result 

is obtained. 

Theorem 5.4 shows that randomness of the number of renp'-^l processes 

leads to counting processes which are mixtures of (nonhomogeneous) Polsson 

processes. 

Example: 

Take    a ■ 2   ,  A(y)  » 1 - e"y  .    The limiting d.f.'s are 

G   (x) - 0 
m 

- {x2/(l+x2)}m 

for    x <. 0 

for    x > 0 
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COMPOSITION OF COHERENT STRUCTURES 

Many multi-component systems occurlng in the field of reliability are 

coherent structures (e.g., see [1]).  A coherent structure consisting of .n 

components c.,c„, ..., c  is described by its structure function 4i(x) 

which Is 1 if the system works and 0 otherwise, where  x ■ (Xj.x., ..., x ) 

and x  is 1 if component c.  is working and 0 if it is failed.  The binary 

function ^  is required to satisfy 

(1)  Each component c  must be eeeential',   that is to say, there is 

a realization x, x. , , x,,,, ..., x  such that 
1'    '  1-1 '  i+1      n 

^(Xj^, .... x. 1 , 1 , xi+1, .... xn) = 1 and 

♦ (x., •••» XJ_I » 0 , XJJ.'I» •••» xn) 
= 0 . 

(ii)  (()(x) i ♦(y)  for all x = (x., ..., xn) and y = (y^   ..., yn) 

such that x < y  , 1 £ i £ n . 

From (i) and (ii) it follows immediately that $(1) ■= 1 and ^(0) =0 , 

where  1 - (1,1, .... 1)  and 0 = (0,0, ..., 0) . 

Most of the classical problems in extreme value theory are contained in 

the following general question:  "Given a coherent structure with a finite 

number of components and some procedure to Increase the number of components 

without bound, what are the possible iimiting d.f.'s for the system lifetime 

for given component lifetime d.f.'s?" For example, the minimum of a set of 

random variables corresponds to the lifetime of a series structure, and the 

maximum likewise corresponds to a parallel structure.  The so-called k-out-of-n 

structure generate order statistics an'1 series-parallel and parallel-series 

systems give rise to the mlnimax and raxlmin (see [3]) of double arrays of 

random variables. 

In this section, results are obtained when the method of "expanding" the 

structure is that of repeated composition.  Thus, starting with a system of 
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n    components,   each component  Is  replaced  by a similar  system giving a syj tern 

2 f^ 
of n components, then each component in this system Is replaced by a replica 

3 
of the original system, giving a system of n  components, etc.  The first 

three stages of composition for a three component system are illustrated in 

Figure 6.1. 

It is assumed that all components are independent and identical.  In 

particular, let p = P{X «=1} be the reliability  of each component c , 

where X.  is the binary random variable designating the state of component 

c  . The structure function ^(x) becomes a binary random variable and the 

reliability of the structure will be denoted by h(p) » P{iKX) = 1} .  Now 

suppose that the components fail over time and have a common lifetime d.f. 

F(t) with binary indicator random variables X (t) which are 1 or 0 

according as component c  is in a working or failed state respectively at 

time t .  Then P{X (t) = 1} = F(t)  and so the system has lifetime d.f. 

1 - h(F(t)) .  The system which results after n compositions has lifetime 

d.f.  1 - h  (F(t)) , where h    denotes the n-fold composition of the 

function h with Itself. It is assumed throughout this section that 

h(p) t  p .  Suppose that for suitable  (a > 0} and {b } 

(6.1) h(n)(F(a x + b )) ^ G(x) . 
D    n 

Then 

Lemma 6.1; 

If G(x) is a limiting d.f., then h(G(x)) = G(ax + ß) for some 

a > 0 , ß . 

Remark: 

This lemma generalizes the concept of maximum stable  d.f.'s Introduced 

by Gnedenko. The relation h  (G(x)) ■= G(a x + ß ) for some a    > 0 . ß 
n    n n      n 
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nnd for all  n is no more general, since it is Implied by the lemma with 

a ■= a  and  ß «■ (1 + o + ... + a  )6. 
n n 

Proof; 

From (6.1), 

h(n+1)(F(a x + b )) -> h(G(x)) 
n    n 

and 

h(n+1)<'F(Vix + W» ^^ 

But by Khintchine's theorem [7], these two d.f.'s must be of the same type, 

I.e. , 

h(G(x)) - G(ax + ß) - 

If    a j 1   , set    G  (x)  «■ Glx + ■——1 ,  so that 

(6.2)        h(G*(x)) - hfcfx + Y^j) " ^(ax + T^) " 5*(ax)   ' 

*. * 
If    a - 1  , set    G  (x) •= G(logx)    and    a    ■ e    , so that 

(6.3)      h(G   (x)) - h(G(log x))  - G(log x + log a*)  - G*(a*x)   . 

Theorem 6.1; 

G(x)    is  a limiting d.f.   If and only if    G(x)     is  type equivalent  to 

iKx)    or    ^(e  )   , where    1 - ij/(x)     is a d.f.  and 

(6.A) h(iKx)) - -Hax) for all    x  , where    a > 0 , o »* 1  . 

ß _-    tU_t ( 
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Proof: 

The necassity part follows from (6.2), (6.3) and Lemma 6.1.  For sufficiency, 

notice that each such d.f. is in its own domain of attraction by choosing, 

a-a  ,b -0 or a  -l,b »-n log a respectively. 

The following is a well-known result (e.g«. see (1], p. 199). 

Theorem 6.2: 

Excluding the trivial case h(p) - P , 

one of three kinds 

for 0 < p < 1 

for 0 < p < 1 

for 0 < p < P0 

for p - Pc 

for P < P < 1 

the reliability function h(p)  is 

(i) h(p) < P 

(ii) h(p) > P 

(iii) h(p) < P 

"Po 

> P 

Defining    h *(p) m 

h(p)  < P   ' oc  h  ( :P) > P 

(h is "S-shaped about PO") 

h*(p) - 1 - h(l - p) and ^ (x) - 1 - i|/(-x) , it is seen that 

and 

(6.5)    h%*(x)) - 1 - hOK-x)) - 1 - M-ax) = * (ax) , 

so that It suffices to consider cases (i) and (iii) only. 

Lemma 6.2; 

If    h(p)   < p    and    tyW    satisfies   (6.4),   then neither of  the  following 

situations can occur 

(1)      a>l,x£0,0< i|)(x)  < 1  . 

(ii)    a < 1  , x ^ 0  , 0 < <Kx)   < 1  • 
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Proof; 

(i)  ^(ax) >^ ij;(x) , since ax £ x and i|i is monotone, and 

hC^Cx)) < ^(x)  by the assumptions.  Thus with (6.^), a contradic- 

tion results. The proof of (ii) is similar.  Likewise, one can 

show 

Lemma 6.3; 

If    h(p)     is S-shaped  about     p      and    iKx)     satisfies   (6.^),   then none 

of the  following can hold 

(1)   o < 1 , x ^ 0 , 0 < iKx) < p . 
' 

(II) o<l,x<0,p < iKx) < 1 • 
_~     0    _ 1 

(III) a>l,x<^0,0<^(x)<p. j 

(Iv)  o > 1 , x > 0 , p < ^(x) < 1 . * 
O 4 

| 

From (1), (11) and the fact that \Kx) is the tail of a proper d.f., 

It Is seen that (6.4) cannot hold with a < 1 when h(p)  is S-shaped. Thus 

the solutions to (6.4) take one of the following five forms 
i 

la)  h(p) < p , a > 1 ,    t|;(x) = 1       for x £ 0 

0 < i|;(x) < 1       for x > 0 . 

lb) h(p) <p,a<l,0<4/(x)<l      for x<0 

iKx) - 0      for x ^ 0 . 

2a) h(p) S-shaped about p  , a > 1 ,     4.(x) - 1      for x < 0 

0 < 4»(x) < po     for x > 0 . 

2b) h(p) S-shaped about p  ,a>l,p <i|/(x)<l      for x < 0 

iKx) - 0      for x >_ 0 . 

2c)  h(p) S-shaped about p  , a > 1 , p < ^(x) < 1      for x < 0 

0 < tKx) < po     for x > 0 . 
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The class of all solutions  to   (6.A)   can now be gpnerated;   for example: 

Theorem 6.3i 

The class of all solutions of the form la) may be obtained by the 

following procedure: 

(i)   Pick any a > 1 . 

(ii)  Pick any x > C . 

(iii) Define d/(x)  in the half-open, half-closed interval  (x ,ax ] oo 
so that it is nonincreasing and not constant over the interval. 

,*■•')      Extend tj/(x)  to the positive real axis by defining 

, / N  uOOl, / -k  \l   r    k        k+1     . 
ij)(x) = h  j^la x I? , for ax < x j< a  x  , where a negative 

index k means the (-k)  composition of the inverse function 

h"1 . 

Similar procedures may be derived for solutions which are of the other 

forms. 

It is clear that the class of limit d.f.'s thus generated is very large. 

In the case of composition of series structuros, the class of limit d.f.'s 

has been characterized by Mejzler [13] and includes d.f.'s other than those 

of the type (1.1).  For example, the function 

(6.6)       t(»(x) »0 for x £ 0 

3 
- exp[- x (5 + sin(2TT log x'log 2))]       for x > 0 

g 
is the tail of a d.f. and satisfies (6.A) for h(p) «= p  , a = 2 . 
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